Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Diagnostics (Basel) ; 13(11)2023 May 28.
Article in English | MEDLINE | ID: covidwho-20232015

ABSTRACT

COVID-19, continually developing and raising increasingly significant issues, has impacted human health and caused countless deaths. It is an infectious disease with a high incidence and mortality rate. The spread of the disease is also a significant threat to human health, especially in the developing world. This study suggests a method called shuffle shepherd optimization-based generalized deep convolutional fuzzy network (SSO-GDCFN) to diagnose the COVID-19 disease state, types, and recovered categories. The results show that the accuracy of the proposed method is as high as 99.99%; similarly, precision is 99.98%; sensitivity/recall is 100%; specificity is 95%; kappa is 0.965%; AUC is 0.88%; and MSE is less than 0.07% as well as 25 s. Moreover, the performance of the suggested method has been confirmed by comparison of the simulation results from the proposed approach with those from several traditional techniques. The experimental findings demonstrate strong performance and high accuracy for categorizing COVID-19 stages with minimal reclassifications over the conventional methods.

2.
Sensors (Basel) ; 23(7)2023 Mar 30.
Article in English | MEDLINE | ID: covidwho-2291053

ABSTRACT

The advent of Artificial Intelligence (AI) and the Internet of Things (IoT) have recently created previously unimaginable opportunities for boosting clinical and patient services, reducing costs and improving community health. Yet, a fundamental challenge that the modern healthcare management system faces is storing and securely transferring data. Therefore, this research proposes a novel Lionized remora optimization-based serpent (LRO-S) encryption method to encrypt sensitive data and reduce privacy breaches and cyber-attacks from unauthorized users and hackers. The LRO-S method is the combination of hybrid metaheuristic optimization and improved security algorithm. The fitness functions of lion and remora are combined to create a new algorithm for security key generation, which is provided to the serpent encryption algorithm. The LRO-S technique encrypts sensitive patient data before storing it in the cloud. The primary goal of this study is to improve the safety and adaptability of medical professionals' access to cloud-based patient-sensitive data more securely. The experiment's findings suggest that the secret keys generated are sufficiently random and one of a kind to provide adequate protection for the data stored in modern healthcare management systems. The proposed method minimizes the time needed to encrypt and decrypt data and improves privacy standards. This study found that the suggested technique outperformed previous techniques in terms of reducing execution time and is cost-effective.


Subject(s)
Artificial Intelligence , Computer Security , Humans , Algorithms , Privacy , Delivery of Health Care
SELECTION OF CITATIONS
SEARCH DETAIL